High-Level Project Summary
A good source of vitamins and nutrients is vital to the success of long-duration missions to Mars, as it allows optimal health for the crew members. Our project presents a greenhouse designed for the planting, cultivation and harvesting of the species Sarcocornia neei, fully adapted to the conditions of the planet Mars.
Link to Project "Demo"
Link to Final Project
Detailed Project Description
This full-scale model, whose height is 51.5 cm, consists of a dome that serves as a greenhouse. This is made of pvc tubes, joined with screws and tape, the base is made of cardboard, characterized to be similar to the terrain of Mars.
The dome will be covered by polyethylene with UV filter, which is also waterproof, allowing the water to remain inside it.
Next to it is a smaller dome, which serves as a "control center" for the main dome. Here are the arduinos that are responsible for the automation of the irrigation system and gate of the camp.
To make the most of the limited water on Mars, a watering plan was devised, which includes different sensors:
- One sensor regulates the humidity inside the planters, and sends a signal to activate the water pump depending on the plant's needs.
- The other is a light sensor, which activates the pump when there is a drop in lighting to exploit scarce resources to the maximum.
The greenhouse has a gate that contains motion and proximity sensors to automate the entry and exit of the crew members. It also has a servomotor that allows the gate to open. Outside the greenhouse is the control center, where waste control, irrigation level, and water flow distribution are executed.
Inside the greenhouse are the plants, which have an autonomous watering system based on the biological growth parameters of the Sarcocornia neei species.
For the operation of the greenhouse, we seek to maximize the use of resources, so the compost bin will operate on the basis of human feces and urine, which will provide nitrogen. The carbon source to be used during the first months of the mission will be supplemented by the hair of the crew members, and later this will be replaced by the woody body of the same plant. The composter will be connected by hoses to the toilet to transport the waste.
It will be located inside the greenhouse, since inside the greenhouse an adequate temperature (25°C) is maintained to ensure the functioning of the organisms inside the compost. The gases emitted by the compost will also serve to maintain the temperature inside the greenhouse.
A drip irrigation system will be used for irrigation. This will require a small percentage of urine mixed with gray water, the latter will go to a filter located inside the dome. The filtered water will go to the pond, in charge of irrigating the crop. The urine will go to a container, where it will be distributed to the composter, and another small portion will go directly to the water pond to increase the volume of irrigation. The water is pooled with the urine, which lowers the urine level and makes it suitable for watering the plants. The plants are expected to be watered daily with 1.1 liters per day.
The planters are designed to make the best use of water and nutrients, with an environment conducive to plant growth. It is made of two layers, the deepest is made of compost, and the outermost is made of sponge, whose function is to support the plant. The planters have openings for better cleaning and to introduce the compost.
The planters are designed to make the most of water and nutrients, they have a favorable environment for plants to grow. They are made of two layers, the deepest is made of compost, and the outermost is made of sponge, whose function is to support the plant. The planters have openings for better cleaning and to introduce the compost.
Benefits:
Our project provides a sustainable cultivation alternative, suitable for Mars. The idea is to make the best use of resources, including waste (reuse of urine and feces).
The plant to be cultivated presents a high nutritional value, resists high environmental oscillations, high growth rate, easy to handle and easy to transport.
Projections: Through this experience, knowledge and skills acquired, we want to establish a line of research that recognizes sarcocornia, a native species of our region, for its high nutritional contribution, and to be incorporated as an object of study in future manned expeditions to Mars.
Our project seeks to solve one of the major problems that exists when performing long duration missions. Through the model proposed and the variables studied, we intend to contribute to the development of a crop production system that will support future expeditions.
We hope that the dome will be strong enough to withstand the climatic conditions of Mars, and that it will meet its objectives in the sustainability of humans on Mars.
We believe that this dome can also be a solution to the water crisis, a problem that is affecting several places in the world, including the Atacama region. The knowledge acquired will serve to project contributions on sustainable and autonomous self-cultivation, due to the efficiency of water and the reuse of organic waste.
Sketch Arduino was used to program the circuits, the Gizmos platform (photosynthesis laboratory) was used for the research, Tinkercard was used to design the 3D parts that make up the model, and Fritzing was used to design the circuit diagrams.



Space Agency Data
Research about fertilizer: https://humanurehandbook.com/downloads/MANUAL_DEL_HUMABONO.pdf
What inspire our curiosity about Mars: https://mars.nasa.gov/#red_planet/2
About the greenhouse: https://ciencia.nasa.gov/science-at-nasa/2004/25feb_greenhouses
Hackathon Journey
We are a group of students between 15 and 17 years old, from Copiapo Chile.
We have been preparing since last year for the NASA App Challenge, which has helped us immensely to reach today's competition. The knowledge and skills acquired, such as digital design, model building, programming, editing, and of course, the ability to work as a team, have been the fuel that fed our curiosity for the famous Red Planet.
Some say that the Atacama Desert is Mars on Earth, so we could not miss this opportunity. We chose the challenge "Have seeds will travel" because of previous experience in the field, and with the intention of researching about that place that resembles our home.
We had the opportunity to take advantage and improve our skills, and of course we learned many more things. It was interesting to investigate all the preparation that goes into making a trip to Space, especially to Mars. It was also very exciting to learn how to handle complex devices, such as sensors and the arduinos.
This experience has shown us how education has changed thanks to science and technology. After everything we have learned, we hope that children and young people around the world will have the opportunity we had to cultivate our curiosity and challenge our knowledge.
We are very happy with everything we have learned, and we hope that our research can be a contribution to science, as we believe it is changing the way we see the world.
References
https://humanurehandbook.com/downloads/MANUAL_DEL_HUMABONO.pdf
https://mars.nasa.gov/#red_planet/2
https://www.lanasa.net/misiones/marte
https://ciencia.nasa.gov/science-at-nasa/2004/25feb_greenhouses
Abouheif, M., Al-Saiady, M., Kraidees, M., Tag Eldin, A. & Metwally, H., 2000. Influence of inclusion of Salicornia biomass in diets for rams on digestion and mineral balance. Asian–Aust. J. Anim. Sci. 13: 967–973.
Anwar, F., Bhanger, M., Khalil, M., Nasir, A. & Ismail, S., 2002. Analytical Characterization of Salicornia bigelovii seed Oil Cultivated in Pakistan. J. Agric. Food Chem. 50: 4210-4214.
Ashour, N., Serag, M., Abd El-Haleem, A., Mekki, B., 1997. Forage production from three grass species under saline irrigation in Egypt. Journal of Arid Environments. 37(2): 299-30.
Attia, F., Alsobayel, A., Kriadees, M., Al-Saiady, M. & Bayoumi, M., 1997. Nutrient composition and feeding value of Salicornia bigelovii Torr meal in broiler diets. Anim. Feed Sci. Technol. 65: 257–263.
Apostol, N., 2005. Caracteres anatómicos de la vegetación costera del Río Salado (Noroeste de la provincia de Buenos Aires, Argentina) Bol. Soc. Argent. Bot. 40 (3-4):215-227.
Ayres, R.S., Westcott, D.W., 1976. Water Quality for Agriculture. FAO, Rome.
Banciotto, O., 2008. Salicornia: agricultura con agua de mar Innovar Concurso Nacional de Innovaciones Ministerio de Ciencia, Tecnología e Innovación Productiva.(Citado el 5 de octubre). Disponible en: http://www.innovar. gov.ar/blog/in-blog/innovar-07/salicornia-agricultura-con-agua-de-mar.
Barrett-Lennard, E., Malcolm, C. & Bathgate, A., 2003. Saltland Pastures in Australia. Land & Water Australia, Canberra.
Barry, T. & McNabb, W., 1999. The implications of condensed tannins on the nutritive value of temperate forages fed to ruminants. Br. J. Nutr. 81: 263–272.
Belal, I. & Al-Dosari, M., 1999. Replacement of fishmeal with Salicornia meal in feed for Nile tilapia Oreochromis niloticus. J. World. Aquacult. Soc. 30: 285-289.
Business News America, 2008. (Citado el 7 de octubre de 2009). Disponible en : http://www.bnamericas.com/news/petroleoygas/GSI_pretende_cultivar_500,000ha_de_salicornia_en_5-8_anos
Caro, M., Cruz, V., Cuartero, J., Estañ, M. & Bolarín, M., 1991. Salinity tolerantce of normal-fruited and cherry tomato cultivars. Plant Soil. 36: 249–255.
CEAZA, 2006. Memoria del Primer Trimestre 2006. La Serena, Chile.60 p.
Se muere el río Copiapó (I): Consumo humano, agrícola y minero están en riesgo. En: CIPER: Diario electrónico de región de Atacama (en línea). 9 de Julio 2009. (Citado el 21 de septiembre 2009). Disponible en: http://ciperchile.cl/2009/07/09/se-muere-el-rio-copiapo-i-consumo-humano-agricola-y-minero-estan-en-riesgo/
Center International for Biosaline Agriculture, 2006. Annual Report. (Citado el 16 de septiembre de 2009) Disponible en: http://www.biosaline.org/
Concurso Nacional de Innovaciones 2007. (Citado el 29 de septiembre). Disponible en: http://www.innovar.gov.ar/blog/blog/innovar-07/salicornia-agricultura-con-agua-de-mar.
Degen, A., Becker, K., Makkar, H. & Borowy, N., 1995. Acacia saligna as a fodder for desert livestock and the interaction of its tannins with fibre fractions. J. Food Sci. Agric. 68: 65–71.
Dickerson, M., 2008a. Letting the sea cultivate the land. En: Los Angeles Time (on line). (Citado el 15 de septiembre de 2009). Disponible en: http://articles.latimes.com/2008/jul/10/business/fi-seafarm10
Dickerson, M., 2008b. Salicornia here we come? En: Los Angeles Time (on line). (Citado el 15 de septiembre de 2009) Disponible en: http:// 12degreesoffreedom.blogspot.com/2008/07/salicornia-here-we-come.html.
Doussolin, E. & Quezada, C. (2008). Sistema de Incentivos para la Recuperación de Suelos en la Zona Norte. En: Celerino,Q., Sandoval ,.M & E.Zagal. Manejo de Suelos en Zonas Áridas. III Edición; Volumen I. p 34.Chillán. Trama Impresoras S.A.
Eganathan, P., Subramanian, H., Latha, R. & Rao, C. 2006. Induxtrial Crops and Products. 23: 177-179.
El-Haddad, E. & Noaman, M., 2001. Leaching Requirement and Salinity Threshold for the Yield and Agronomic Characteristics of Halophytes under Salt Stress. Journal of Arid Environments, Cambridge. 139: 865-874.
FAO/AGL, 2000. Global Network on Integrated Soil Management for Sustainable Use of Salt-Affected Land. Extent and Causes of Saltaffected Soils in Participating Countries.
Fraser, J., McCartney, D., Najda, H. & Mir, Z., 2004. Yield potential and forage quality of annual forage legumes in southern Alberta and northeast Saskatchewan. Can. J. Plant Sci. 84: 143–155.
Gargiulo, J., 2009. Caminos alternativos dentro de las alternativas. ( Citado el 23 de septiembre 2009). Disponible en: http://www.summitamericas.org/V_Summit/essay/Argentina_Juliana_Gargiulo_sp.pdf
Ghosh, P., Reddy, M., Pandya, J., Patolia, J., Shambhubhai, V., Ghandhi, M., Sanghvi, R., Sravan, G. & Shah, M. 2005. Preparation of Nutrient Rich salt of Planta Origin.United State. Nº de patente. US 6,929,809 B2.
Glenn, E. & O’Leary, J., 1985. Productivity and irrigation requirements of halophytes grown with seawater in the Sonoran Desert. J. Arid Environ. 9: 81–91.
Glenn, E., O`Leary, J., Watson, M., Thompson, T. & Kuehl, O. 1991.Salicornia bigelovii Torr.: An Oilseed Halophyte for Seawater Irrigation. Science. 251: 1065-1067.
Glenn, E., Coates, W., Riley, J., Kuel, R. & Swingle, R., 1992a. Salicornia bigelovii Torr.: a seawater-irrigated forage for goats. Anim. Feed Sci. Technol. 40: 21–30.
Glenn, E., Pitelka, L. & Olsen, M., 1992b. The use of halophytes to sequester carbon. Water, Air, and Soil Pollution 64: 251-263.
Glenn, E., Lewis, T. & Moore, D., 1994. "Synthesis of selected reseach results on Salicornia bigelovii”. Halophyte Enterprises, Inc., 60 p.
Glenn, E., Hicks, N. & Riley, J., 1995. "Seawater irrigation of halophytes for animal feed." Enviromental Research Laboratory, Tucson Arizona, pp.221-234.
Glenn, E., Brown J. & O'Leary, J., 1998. "Irrigating crops with seawater." Scientific American, August 1998, pp. 76-81.
Global Seawater Inc. 2009. (Citado el 7 de ocubre de 2009). Disponible en: http://globalseawater.com/
GOLDER ASSOCIATES, 2006. "Diagnóstico de los Recursos Hídricos de la Cuenca del Río Copiapó y Proposición de un Modelo de Explotación Sustentable." Golder Associates S.A., Santiago, pp.129.
Grattan, S., Grieve, C., Poss, J., Robinson, P., Suarez, D. & Benes, S., 2004. Evaluation of salt-tolerant forages for sequential water reuse systems. III. Potential implications for ruminant mineral nutrition. Agric. Water Manage. 70: 137–150.
Greenway, H., & Munns, R. 1980. "Mechanisms of salt tolerance in nonhalophytes". Annual Review
Plant Physiology, 31: 149-190.
Hoffman, G. & Shannon, M., 1986. Relating plant performance and soil salinity. Reclam. Reveg. Res. 5: 211–225.
INE, Instituto Nacional de Estadísticas. 2007. VII Censo nacional agropecuario y forestal 2007. Instituto Nacional de Estadísticas, Chile. (Citado el 10 de septiembre 2009). Disponible en: http://www.censoagropecuario.cl/ noticias/07/11/ 13112007. html#tablas.
José Alberto Acosta Guzmán (2019): “Existencia de vida en el planeta rojo: caso de estudio "Marte"”, Revista Caribeña de Ciencias Sociales (diciembre 2019). En línea: https://www.eumed.net/rev/caribe/2019/12/vida-planeta-rojo.html
Jones, R., 1998. "Irrigating crops with seawater. " Scientific American fetaure article. ResearchLaboratory Tucson, Arizona, 20 p.
Kaddah, M., 1962. Tolerance of berseem clover to salt. Agronomy Journal 54: 421–425.
Kim, Won-Dae. 2001. Liquid Vegetable Salt Prepation Method and Vegetale Salt. United State. Nº de patente US 2001/0024676 A1
Klein, H. P. (1979), “The Viking mission and the search for life on Mars”, Rev. Geophys. Space Phys. 17, 1655-1662.
Kraidees, M., Abouheif, M., Al-Saiady, M., Tag-Eldin, A. & Metwally, H., 1998. The effect of dietary inclusion of halophyte Salicornia bigelovii Torr. on growth performance and carcass characteristics of lambs. Anim. Feed Sci. Technol. 76: 149–159.
Le Houérou, H., 1994. Forage halophytes and salt-tolerant fodder crops in the Mediterranean Basin. In: Squires, V.R., Ayoub, A.T. (Eds.), Halophytes as a Resource for Livestock and for Rehabilitation of Degraded Lands. Kluwer Academic Publishers, Dordrecht, pp. 123–137.
Marcar, N., Crawford, D., Leppert, P., Jovanovic, T., Floyd, R. & Farrow, R., 1995. Trees for saltland: a guide to selecting native species for Australia. CSIRO Publications, Melbourne.
Martínez, L. (1991). Salinización de suelos en Copiapó (I): Creciente Incorporación de sales amenaza la Productividad del Suelo Agrícola. En: Ciencia y Ambiente (en línea). (Citado 21 de Septiembre 2009).Disponible en:www.cipma.cl/RAD/1991/2_Martinez.pdf
Masters, D., Norman, H. & Dynes, R., 2001. Opportunities and limitations for animal production from saline land. Asian–Aust. J. Anim. Sci. 14: 199–211 (Special issue).
Maters, D., Norman, H. & Barrett-Lennard, E. 2005a. Agricultural sytems for saline soil: the potential role of livestock. Asian-Aust. J. anim. Sci. 18: 296-300.
Master, D., Benes, s. & Norman, H., 2007. Biosaline agriculture for farage and livestock production. Agriculture, Ecosystems and Environment. 119: 234-248.
Mass, E. & Grieve, C., 1990. "Salt tolerance of plants at different growth stages." Proccedingof the International Conference, Tardo, Jam, Pakistan, 20 p..
Midgley, S. & Turnbull, J., 2003. Domestication and use of Australian acacias: case studies of five important species. Aust. Syst. Bot. 16: 89–102.
Mota, U., 1990. "Seawater irrigation crops Salicornia (SOS7) as an example. " The University of Arizona ,Tucson Arizona, 12 p..
Navarro-González, R., F. A. Rainey, P. Molina, D. R. Bagaley, B. J. Hollen, J. de la Rosa, A. M. Small, R. C. Quinn, F. J. Grunthaner, L.
Cáceres, B. Gómez-Silva, y C. P. McKay (2003), “Mars-like soils in the Atacama Desert, Chile, and the dry limit of microbial life”, Science 302, 1018-1021. Soffen, G. A. (1977), “The Viking Project”, J. Geophys. Res. 82, 3959-3970.
Noaman, M.H., El-Haddad, E., 2000. Effects of irrigation water salinity and leaching fraction on the growth of six halophyte species. J. Agric. Sci. 135: 279–285.
O'Leary, J., Glenn, E., & Watson, M., 1985. "Agricultural production of halophytes irrigated with seawater. " Plant and Soil, 89: 311-321.
Parra, M., Albacete A., Martínez-Andújar C. & Pérez-Alfocea F., 2007. Increasing plant vigour and tomato fruit yield under salinity by inducing plant adaptation at the earliest seedling stage. Environmental and Experimental Botany 60: 77–85.
Piñeiro, E., 2008. La salicornia, un nuevo vegetal en la mesa. (Citado el 5 de octubre). Disponible en: http://www.consumer.es/ web/es /alimentacion/ aprender_a_comer_bien/ curiosidades /2008/05/30/177326.php.
Qadir, M. & Oster, J.D. (2004). Crop and irrigation management strategies for saline-sodic soils and waters aimed at environmentally sustainable agricultura.TheScience of the Total Environment. 323(1-3): 1-19
Rico, L. 2009. El agua de mar, una alternativa contra la escasez del agua dulce y su integración en la planificación de políticas públicas.(Citado el 22 de septiembre 2009). Disponible en:http://fcsypmxl.com/Revista%20Plural/Revista%20No.4/podemos%20beber%20agua%20de%20mar%20directamente%20ya%20que.pdf
Rathod, M., Shethia, B., Pandya, J., Ghosh, P., Dolia, P., Srivastava, B., Srivastava, A. & Chaturvedi, V. 2005. Herbal extracts of Salicornia species, process of preparation thereof, use thereof against tuberculosis.United States. Nº de patente: US2005/0186291 A1
Riley, J., Watson, M., and Moore, D., 1992. "Halophyte collection list of accessions." Enviromental reseach laboratory University of Arizona, p 1-6.
Rogers, M., Grieve, C. & Shannon, M., 1998. The response of Lucerne (Medicago sativa L.) to sodium sulphate and chloride salinity. Plant Soil 202: 271–280.
Schachtman, D. & Kelman, W., 1991. Potential of lotus germplasm for the development of salt, aluminium and manganese tolerant pasture plants. Aust. J. Agric. Res. 42:139–149.
Shannon, M., 1997. Adaptation of plants to salinity. Adv. Agron. 60: 75–120.
SEREMI de Agricultura (Chile). 2004. La agricultura regional ante los desafíos del Siglo XXI. Secretaria Regional Ministerial de Agricultura, Región de Atacama. (Citado el 23 de septiembre). Disponible en http://www.atacama.minagri.gob.cl/ documentos. htm.
Sierra, C., Césped R. & Osorio, A., 2001, “Caracterización de la Salinidad de los Suelos y Aguas del Valle del Río Copiapó”, Boletín INIA N°70.
Spangle, A., 2007. The Future's Farmer. (Citado el 23 de septiembre). Disponible en: http://www.vanityfair.com/ politics/ features/ 2007/04/hodges200704. Noviembre 2008.
Squeo, F., Arancio, G. & Gutiérrez, J., 2008. Libro rojo de la flora nativa y de los sitios prioritarios para su conservación: Región de Atacama. Edits. F.A. Squeo, G. Arancio, y J.R. Gutiérrez. Eds. Universidad de La Serena, La Serena (Chile), 466 pp.
Swingle, R., Glenn, E. & Squires, V., 1996. Growth performance of lambs fed mixed diets containing halophyte ingredients. Anim. Feed Sci. Technol. 63: 137–148.
The Seawater Foundation, 2003. Seawater Farms Eritrea. (Citado el 16 de septiembre de 2009). Disponible en: http://www.seawaterfoundation.org/ sea_eritrea.html.
World Water Council. 2009. (Citado el 29 de septiembre). Disponible en: http://www.worldwatercouncil.org/

